Phenotypic plasticity in prostate cancer: role of intrinsically disordered proteins
نویسندگان
چکیده
A striking characteristic of cancer cells is their remarkable phenotypic plasticity, which is the ability to switch states or phenotypes in response to environmental fluctuations. Phenotypic changes such as a partial or complete epithelial to mesenchymal transition (EMT) that play important roles in their survival and proliferation, and development of resistance to therapeutic treatments, are widely believed to arise due to somatic mutations in the genome. However, there is a growing concern that such a deterministic view is not entirely consistent with multiple lines of evidence, which indicate that stochasticity may also play an important role in driving phenotypic plasticity. Here, we discuss how stochasticity in protein interaction networks (PINs) may play a key role in determining phenotypic plasticity in prostate cancer (PCa). Specifically, we point out that the key players driving transitions among different phenotypes (epithelial, mesenchymal, and hybrid epithelial/mesenchymal), including ZEB1, SNAI1, OVOL1, and OVOL2, are intrinsically disordered proteins (IDPs) and discuss how plasticity at the molecular level may contribute to stochasticity in phenotypic switching by rewiring PINs. We conclude by suggesting that targeting IDPs implicated in EMT in PCa may be a new strategy to gain additional insights and develop novel treatments for this disease, which is the most common form of cancer in adult men.
منابع مشابه
Molecular signaling involving intrinsically disordered proteins in prostate cancer
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their functio...
متن کاملUnfoldomics of prostate cancer: on the abundance and roles of intrinsically disordered proteins in prostate cancer
Prostatic diseases such as prostate cancer and benign prostatic hyperplasia are highly prevalent among men. The number of studies focused on the abundance and roles of intrinsically disordered proteins in prostate cancer is rather limited. The goal of this study is to analyze the prevalence and degree of disorder in proteins that were previously associated with the prostate cancer pathogenesis ...
متن کاملPhenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory
Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple mol...
متن کاملCancer/Testis Antigens: “Smart” Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers
A clinical dilemma in the management of prostate cancer (PCa) is to distinguish men with aggressive disease who need definitive treatment from men who may not require immediate intervention. Accurate prediction of disease behavior is critical because radical treatment is associated with high morbidity. Here, we highlight the cancer/testis antigens (CTAs) as potential PCa biomarkers. The CTAs ar...
متن کاملComputational approaches to understanding the biological behaviour of intrinsically disordered proteins
Intrinsically disordered proteins (IDPs) represent a class of proteins that lack a persistent folded conformation and exist as dynamic ensembles in their native state. Inherent lack of a well-defined structure and remarkable structural plasticity have facilitated their functioning in a wide range of crucial cellular processes such as signalling transduction and cell cycle regulation as well as ...
متن کامل